Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation

نویسندگان

  • David Ardia
  • Lennart F. Hoogerheide
  • Herman K. van Dijk
چکیده

This paper presents the R package AdMit which provides flexible functions to approximate a certain target distribution and it provides an efficient sample of random draws from it, given only a kernel of the target density function. The core algorithm consists of the function AdMit which fits an adaptive mixture of Student-t distributions to the density of interest via its kernel function. Then, importance sampling or the independence chain Metropolis-Hastings algorithm is used to obtain quantities of interest for the target density, using the fitted mixture as the importance or candidate density. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling algorithm. The relevance of the package is shown in two examples. The first aims at illustrating in detail the use of the functions provided by the package in a bivariate bimodal distribution. The second shows the relevance of the adaptive mixture procedure through the Bayesian estimation of a mixture of ARCH model fitted to foreign exchange log-returns data. The methodology is compared to standard cases of importance sampling and the Metropolis-Hastings algorithm using a naive candidate and with the Griddy-Gibbs approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit

This introduction to the R package AdMit is a shorter version of Ardia et al. (2009), published in the Journal of Statistical Software. The package provides flexible functions to approximate a certain target distribution and to efficiently generate a sample of random draws from it, given only a kernel of the target density function. The core algorithm consists of the function AdMit which fits a...

متن کامل

A Class of Adaptive EM-based Importance Sampling Algorithms for Efficient and Robust Posterior and Predictive Simulation

A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of sequences of importance weighted Expectation Maximization steps in order to efficiently construct a mixture...

متن کامل

A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation

A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of sequences of importance weighted Expectation Maximization steps in order to efficiently construct a mixture...

متن کامل

AdMit: Adaptive Mixtures of Student-t Distributions

This note presents the package AdMit (Ardia et al., 2008, 2009), an R implementation of the adaptive mixture of Student-t distributions (AdMit) procedure developed by Hoogerheide (2006); see also Hoogerheide et al. (2007); Hoogerheide and van Dijk (2008). The AdMit strategy consists of the construction of a mixture of Student-t distributions which approximates a target distribution of interest....

متن کامل

A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihoods

Important choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior distributions. We focus on the situation where one makes use of importance sampling or the independence chain Metropolis-Hastings algorithm for posterior analysis. A comparative analysis is presented of possible ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008